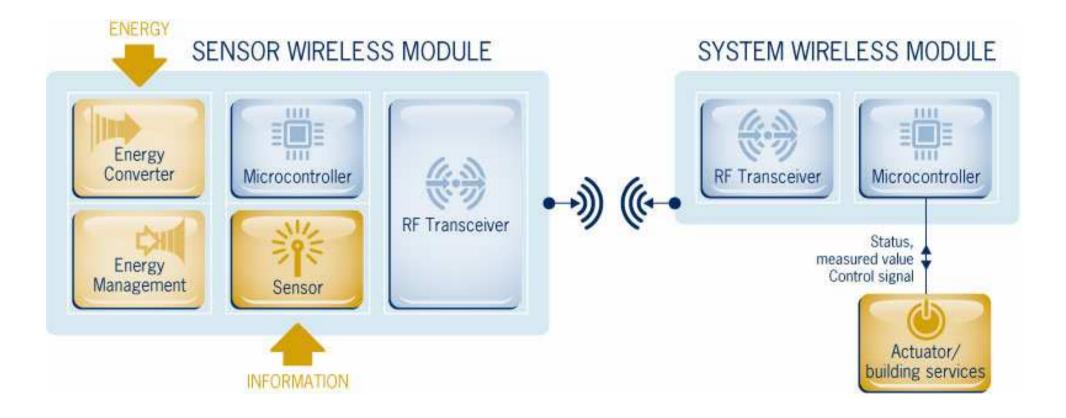
Forum "Innovations for Industry"

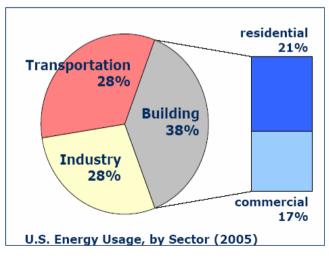
Session: Energy Harvesting and Wireless Sensor Networks Hannover Messe 2010



Self Powered Radio Systems in Practice: Concepts, Products & Prospects

Frank Schmidt, Founder & CTO EnOcean GmbH

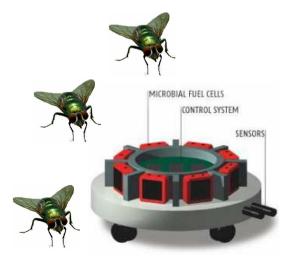
Energy Harvesting Wireless Sensors



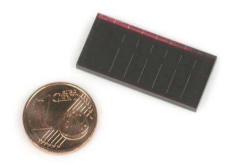
Energy Harvesting Radio Sensors-Key Applications

1. You can Save 30% Energy with Building Automation Systems

2. Energy Harvesting Sensors are ideal for Status Monitoring



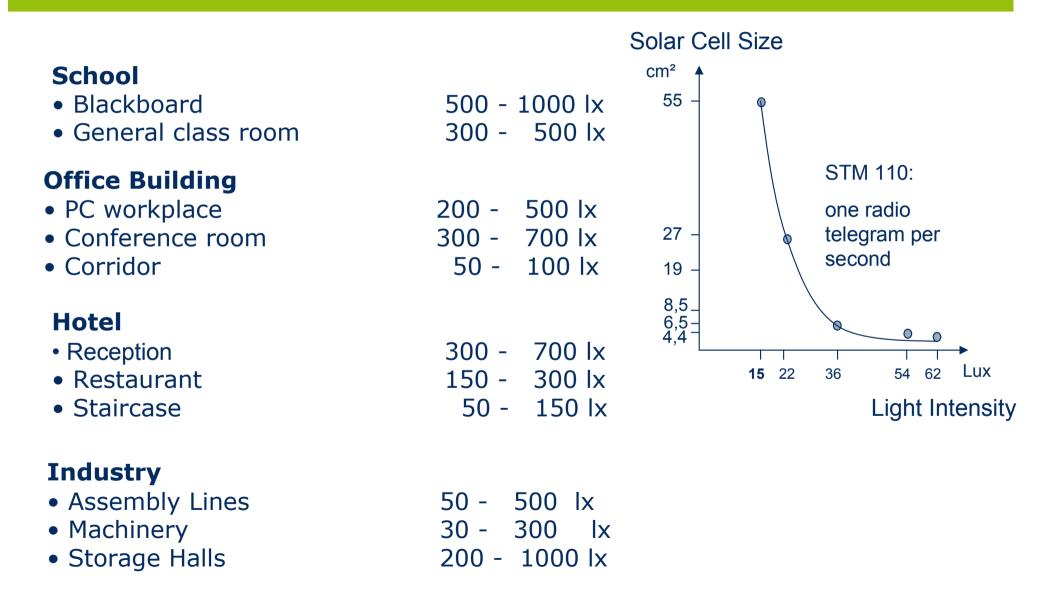
Energy Sources Ranking



- Solar
- Displacement
- Thermal
- Rotation & Flow
- Vibrations
- Radio waves
- Air pressure changes
- Muscle contraction
- Blood sugar fuel cells
- Organic material

Light Energy (1)

Thin Film Solar Cell: 1cm² active Area


"Quick Start"

Indoor Outdoor 1,00E+03 1,00E+02 1,00E+01 Power in mW 1,00E+00 1,00E-01 Solar cell area in cm² 1,00E-02 1,00E-03 100 1000 10000 100000 Light intensity in Lux

Power, attainable from Low Cost Thin Film Solar Cells


Light Energy (2) Typical Illumination

Light Energy Harvesting Product Examples

Solar Powered Sensor Module STM 110

Window Contact

Industrial Temp. Sensor

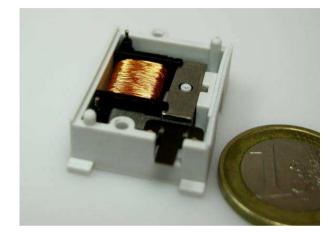
Outdoor Temp. Sensor

Duct Temp. Sensor

Room control panels

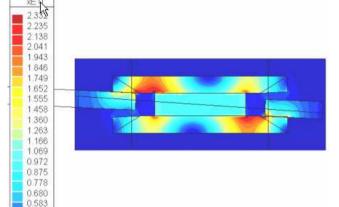
Industrial Temp. Sensor

Industrial Fridge Sensor Sensor

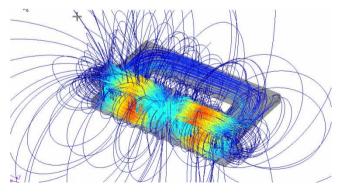



PIR Presence Detection

Mechanical Energy (1):Linear Movement



•EnOcean ECO 100 converter module



EnOcean ECO 100 voltage response

Bm(Tesla

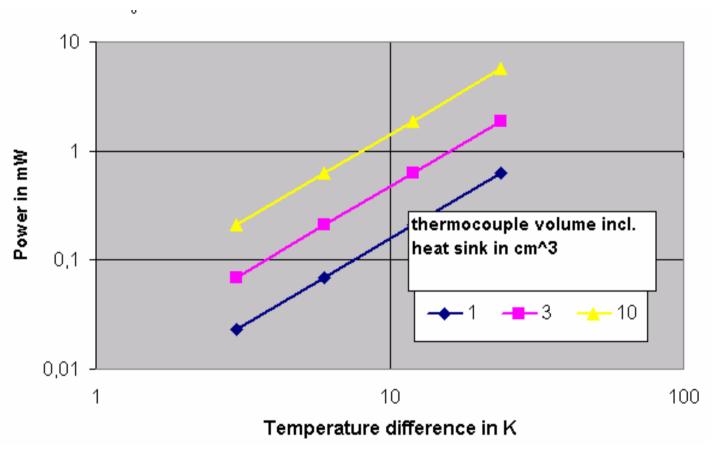
FEM-Simulation magnetic flux density within iron core

FEM-Simulation of external magnetical field

Mechanical Energy (2): Linear Movement

Technical Data Button Push Converter						
Operating Force (N)	5					
Displacement (mm)	1,5					
Mechanical Input Energy (µWs)	7500					
Electrical Output Energy (µWs)	350					
Efficiency	4,67%					
Radio						
Frequency (MHz)	315 or 868MHz					
RF Power (dBm)	6					
Modulation	FASK					
Data Transmission						
Number of Repetitions	35					
Single Telegram Duration (ms)	0,6					
Information Content (Bits)	60					

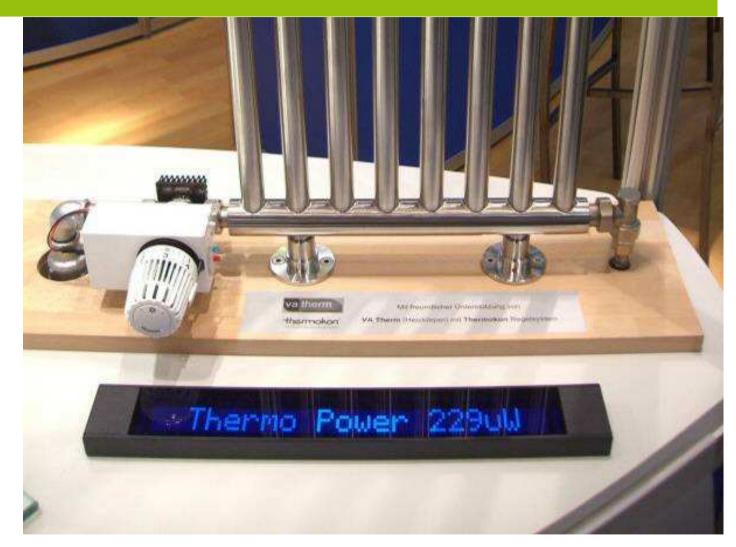
Mechanical Energy Harvesting Product Examples


Thermal Energy (1)

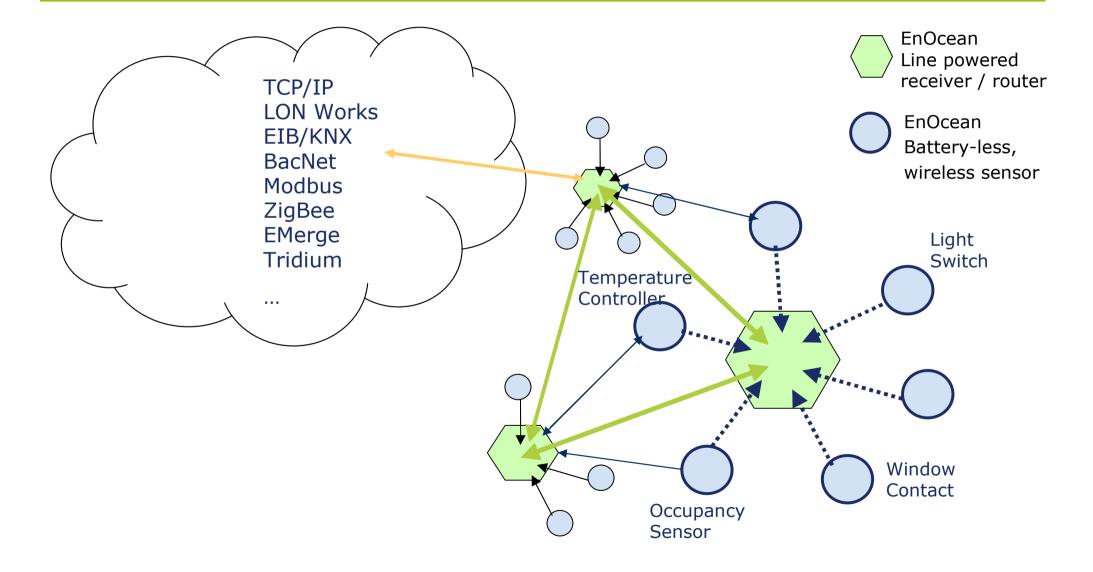
Cooling down one drop of water by 1 degree frees enough energy for

25.000 EnOcean Radio telegrams!

Attainable power from thermoelectric converters depending on size and temperature difference


Thermal Energy Application Example

Human body heat operated radio sensor


Thermal powered heating valve

Interoperable Products & Connectivity

Multi-Vendor Interoperable Products

Lighting Controls

Heating & Cooling Systems Sensors

Building Automation Systems Gateways

10-05-03

EnOcean Alliance | Graham Martin |

Automotive Engine Production (D)

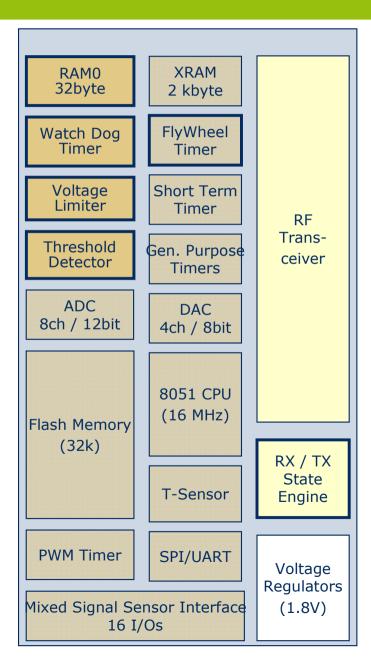
Status: Product

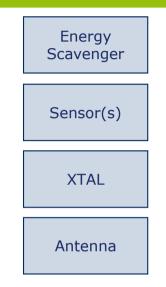
- Process Monitoring & Control
- Material Flow Control

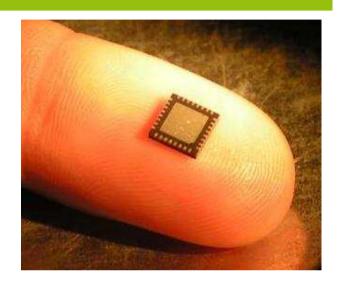
Status: Products

Cable Tree Radio Sensors for Automotive

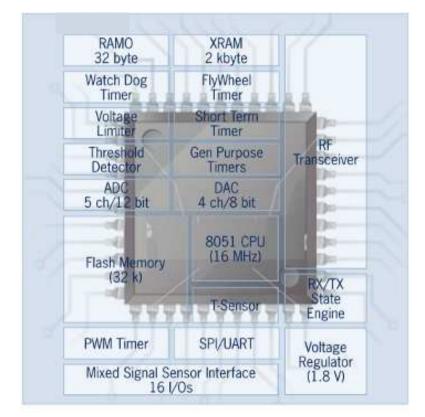
Status: Products






- Paper Mill Radio Sensors (Spremberg, Germany)
- **Status: Evaluation**

Electronics for 3rd Generation Devices: Dolphin Single Chip Solution



Superior Low Energy Need

- **OFF** Mode ~20nA \rightarrow **Deep Sleep Timer Mode** ~200nA **Flywheel Sleep Mode** ~500nA \rightarrow Short Term Sleep Mode ~15µA **Standby Mode** ~1.3mA **CPU Mode** ~4mA \rightarrow TX (868MHz, 10dBm) ~20mA **RX (868MHz)** ~28mA \rightarrow
- Fast operation mode changes
- Only a few additional components needed

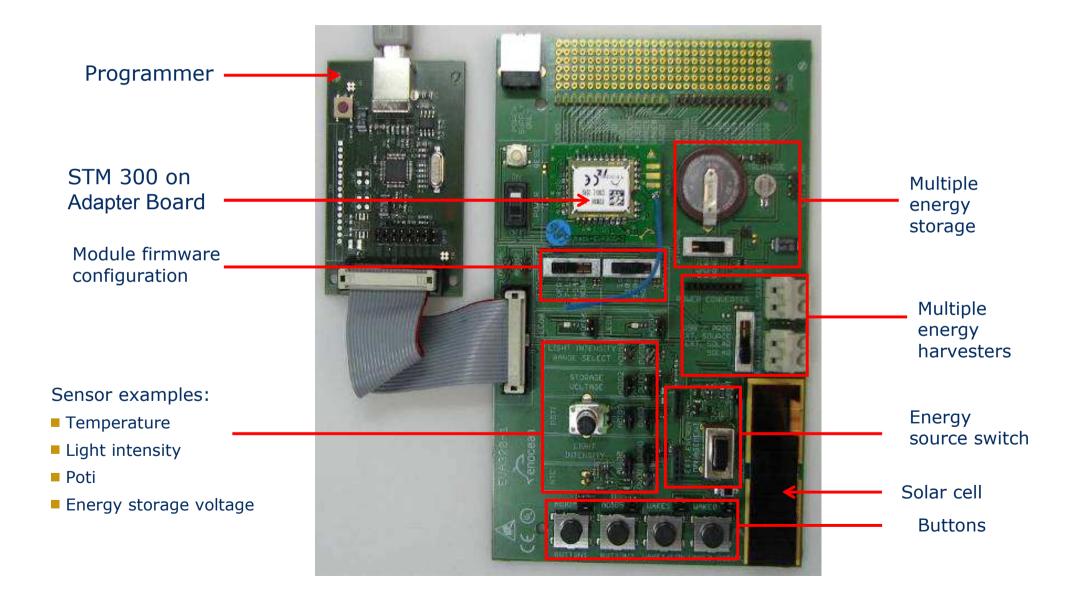
SoC for EH-powered WSN: Microcontroller, Peripherals and RF Transceiver



CPU

- I6 MHz CPU 8051 assisted by system timers, CPU timers, and memories as boot ROM, 2 kbyte XRAM, 32 kbyte FLASH, and the serial SPI/UART interface
- Mixed Signal Sensor Interface
 - Digital control and digital sense by up to 16 configurable digital I/O's
 - Sensing up to 5 single ended or differential analog values by a high performance 12-bit A/D converter
 - Output of an analog signal by using a D/A converter
 - PWM output
- Radio Transceiver
 - RF transceiver part with integrated state engines for the reception (RX) and transmission (TX) of radio telegrams
 - EH optimized EnOcean radio protocol

The next Generation: SoC allows compact and low-cost WSN solutions



Generation 1 (2003): Discrete components on both PCB sides, 42 x 24 x 5 mm, 5V, 33 mA Generation 3 (2009): SMD device, 22 x 19 x 3 mm, 2.5V, 30 mA

SoC Evaluation Board

Development Kit for Self-powered Devices

EDK 300 / 300C (EnOcean Dev Kit)

- Two plug&play transceiver modules with basic FW, no need for programming:
 - EDK300: TCM300 on piggyback + TCM310
 - EDK300C: TCM300C on piggyback + TCM320C
- Two evaluation boards for easy communication setup
- Self-powered switch (868 or 315 MHz)
- EPM 100 / 100C
- Programmer to load customer specific applications
- "Dolphin Studio" for easy chip configuration
- C source code of sample apps (e.g. light control, temperature sensor, etc.)
- Keil C-compiler & Keil Linker (Trial)

The EnOcean Standard

ENOCEAN ALLIANCE PROMOTER				m Strutt Writess. OCEAN* Procean.com		LEVIT <mark>ON</mark>	
MASCC www.masco.com	a Honeywell	a Honeywell Business www.mkelectric.co.uk		www.omnio.ch		Sensortechnik GmbH www.thermokon.com	
VOLL- MITGLIEDER	Www.adhocelectronics.com	www.bk-electronic.de		Boof Up amon www.bootup.ch		www.embedded-intelligence.de	
Wechoflex www.echoflexsolutions.com	www.eltako.com	HAUTAU www.hautau.de		HOPPE O		ILLUMRA www.illumra.com	
www.insys-tec.de	WWW.Jaeger-Direkt.com	kieback&peter www.kieback-peter.de		LOMMARC INTERNATIONAL www.lonmark.org			
SYLLANIA	www.peha.de			WWW.regulvar.com		SAUTER Relative to Mich	
schuite Ministrik	sensor dynamics.com	SERVODAN www.servodan.dk		SIEMENS www.automation.siemens.com		.steute	
TEXAS INSTRUMENTS www.texas-instruments.de	UNITRONIC ///	vices www.vicos.at				www.zumtobel.com	
ASSOCIATE MI			losia	WWW.Hugo.co		WWW.Lantoper.com	
abcshop24.de	Akktor	reconcides of		B.TIB		betec controls	
CAO GROUP INC.	DigiTower	ENERGIE GENTUR BERGHNER UND PERSORER		Engenuity		ENDTECH	
Wolfgang Friedl	Functional	<u>Funk Atechnik</u>		HK INSTRUMENTS		R OCHSCHRLE REGRACH Breimach University of Appler Scribaes	
Applied Laboration and Appl HOCHSCHULE LUZERN	interiorautomation	182 Ingenieurbüro Zink ambit		@		THE RAGA ELECTRONICS COLITION	
Kore Detunics Inchesing Institute	KB KA Projekt Colde			Koenig Consulting Inc.		KVL COMP	
5	LEDALITE	PLessWire		CA. H. MEYER		Moñitáni	
Martin Waker Elaktronakagan Gadit	nibbiawaya	OBERMEYER		🥟 ORKIT		POLAR	
	SAT	Ø		SIFRI		st.	
styli Q	TAMBIENT					WeberHaus Ne Zelandi Saven	

- > 150 Companies supporting
- > 350 Interoperable products
- > 100,000 buildings deployed
- Award Winning Green Technology
- IEC Standardization

THE ONLY WIRELESS STANDARD WITH ENERGY HARVESTING