Forum "Innovations for Industry"

Energy Transmission for Wireless Sensor Systems

Dipl.-Ing. V. Geneiß

Fraunhofer ENAS - Department ASE Paderborn Warburger Strasse 100 – D-33098 Paderborn

Overview

- Introduction of Fraunhofer ENAS
- Typical Sensor Applications
- Wireless Energy Sources
- Reference Applications
- Summary

Fraunhofer ENAS – University Cooperations

Fraunhofer ENAS Advanced System Engineering

The department Advanced System Engineering located in Paderborn unites research and development for design, simulation and characterisation of micro and nano electronic systems.

Main Skills:

- Intelligent Mobile Wireless Sensors
- RFID Antennas and Circuits
- Modelling of EMC and SI/PI Effects
- EMC/EMR of micro- and nano-elektronic Systems
- Nearfield Measurements
- Model-based Development Methods for heterogenes Systems

Sensor Application: Wireless Automation Control

Industry robot with wired sensoric

Wireless sensor devices installed in a typical robot type production-cell (27 m³)

Reference: Introduction to WISA - Wireless Interface for Sensors and Actuators ABB, V2.0, July 2006

Sensor Application: Body Area Network

Overview Energy Sources for mobile Devices

Energy Harvesting: Typical Sources

Solar Cell

- In interiors mostly only low lighting < 1.000 lx
- In outdoor environment big potential
- Container surveillance: Containers mostly located outdoors, lighting > 2.000 lx, but mechanically high load, shadowing effects based on stacked containers

Thermoelectric Generator

- Significant temperature difference needed
- Application at human body reasonable (difference temperature body/air 10-15K)
- hardly reasonable for Cargo applications, because only low temperature difference

Vibration Generator

 Rotating machines: high Vibration of fixed frequency (up to 0,7 g)

Flexible Solar cell 0,7g, 24cm²

Thermo Generator 25 mg, 8,44 cm²

Vibration generator 289 g, 133 cm³

Wireless Power Supply: Electromagnetic Coupling

Advantages

- High reach
- Existing antenna can be used
- Small dimensions

Disadvantages

- Very bad efficiency in free environment
- Restrictive standards for high frequencies
- Energy will be transmitted indepentendly of the load

Electromagnetic Waves transport the energy!

Wireless Power Supply: Electromagnetic Coupling

Calculation Example

UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft An optimum illumination of the functional area is better to be reached by many distributed transmitters, than by only one strong.

Wireless Power Supply: Inductive Coupling

Functional Area

- An inductive coupling is bound to a precise adjustment of the antenna coils
- The functional area for the vertical adjustment of the antenna differs from the horizontal adjustment
- Magnetic field lines are always closed

Reference Applications

RFID Label with bistable Display (PARI*FLEX*)

- Inductive Energy Transfer
 - Transfer of 80 mW to the Label
 - Various Orientations, Range: up to 5 cm
- Antenna Design
 - Optimisation of Energy and Data Transfer
 - Decoupled Antennas for Energy and data transfer on the same Frequency
- Reader Design
 - Increased Output Power
 - Optimised Field coupling for minimised radiation

Reference Applications

Wireless Energy Transmission

Magnetomotive Force (MMF)

- Low electromagnetic emission
- Sensing of receiver possible: allows a "stand-by"-mode

Antenna Design

- efficiency Optimizated by a matching network at transmitter and receiver
- good efficiency can be achieved by higher operating frequency

Measurement Setup

- Transmission of 15 W / 230 V to the load
- Operating range up to 120 cm
- ISM-frequency of 13.56 MHz

IVERSITÄT PADERBORN

Die Universität der Informationsgesellschaft

Summary and Conclusion

- Wireless sensors are needed in a wide area of industrial and consumer applications
- While wireless data transfer is well known, the wireless energy supply is still an open task
- Energy harvesting could be an option for specific low power applications
- For most applications wireless energy sources are needed
- Further development is needed

Thank you for your attention!

Dipl.-Ing. V. Geneiß volker.geneiss@enas-pb.fraunhofer.de

Fraunhofer ENAS - Department ASE Warburger Strasse 100 D-33098 Paderborn

