

# Wireless soil moisture sensor networks for environmental monitoring and agricultural irrigation

Christof Hübner<sup>1</sup>, Rachel Cardell-Oliver<sup>2</sup>

<sup>1</sup>University of Applied Sciences Mannheim <sup>2</sup>University of Western Australia, Perth





# Outline

- Motivation
- System overview
- Sensor design
- Wireless nodes
- Radio propagation
- Conclusions

The outdoor "Internet of Things"





# Motivation

Precision agriculture requirements

- soil moisture measurement with high spatial resolution
- real time data availability for irrigation control
- low total costs
- low maintenance





 Development of a soil moisture monitoring and irrigation control system for vineyards

hochschule mannheim

 Vineyard irrigation in Germany allowed since 2003

Funded by the German Federal Agency for Agriculture and Food (BLE)







## Vineyard





#### Drip irrigation



## **System overview**







## Low cost moisture sensor



• soil

- building materials (concrete)
- powders, grains, emulsions
- compost, woodchips
- custom design for other applications





## Soil moisture sensor placement







## **Sensor installation I**





20 positions with each 4 sensors in different depths





## **Sensor installation II**





## **System overview**







## Wireless nodes in the vineyard





# Wireless sensor networks

hochschule mannheim

- Sensor nodes monitor and control the environment
- Nodes process data and forward data via radio
- Attachment to other networks with a gateway
- Energy efficient (e.g. 5 mAh per day with a pair of AA batteries)
- Potentially a very high number of nodes at very low cost per node





# Selection criteria for the radio chip

- Long range (> 500 m line of sight), unlicensed operation
- Low power consumption and low data rate (kbps range)
- Preferably mesh networking (depending on protocol stack)





## How important is the radio chip?



http://freaklabs.org





# Zigbee



💋 ZigBee Alliance

- "the software"
- Network, Security & Application layers

#### IEEE 802.15.4

- "the hardware"
- Physical & Media
  Access Control layers



## **Zigbee topology (cluster tree)**





## Wireless node for outdoor applications





# Radio propagation experiment (2.4 GHz)





## Wireless modules at 5 different heights









#### Node height above ground: 10 cm









#### Node height above ground: 60 cm









#### Node height above ground: 110 cm









#### Node height above ground: 160 cm









#### Node height above ground: 210 cm





## **System overview**





## **Gateway solution**



- Embedded PC (500 MHz, 256 MB RAM, 4 W power consumption)
- GPRS modem
- Standard Debian distribution, Compact Flash card ( / ro, /data rw)
- Autossh for tunneling



## **System overview**







## **Geograpical information system**





## Range measurement (900 MHz), Kings Park







## **Topography and radio range calculation**







## Range measurement (900 MHz), DNA Tower I







## **Topography Broadway, Kings Park**





## Range measurement (900 MHz), DNA Tower II





## Range measurement (900 MHz), Kings Park





## Range measurement (900 MHz), Kings Park







## **Bushfire warning system**



- 20 mW transmitter
- temperature sensor
- software defined radio
- up to 5 km range





## **Asset tracking**











ter training

12.







impulse für wachstum Zentrales Innovationsprogramm Mittelstand



# Conclusions

- Soil moisture sensor networks for precision agriculture
- Wireless nodes, gateways and geographical information systems
- Radio propagation models for range prediction and deployment
- Request for complete and reliable systems





