# Wireless Condition Monitoring with Self-sufficient Sensor Nodes

Hannover Messe 2011: "Innovation for Industry" Forum Session: Energy Harvesting & Wireless Sensor Network

Dr.-Ing. Dr. rer. oec. Michael Niedermayer

Fraunhofer-Institute for Reliability and Microintegration

Department: System Design & Integration





IZM

Tecomos

# **Application: Condition Monitoring of Paper Mills**

#### Problem:

- Sudden failures of critical machine components lead to unpredicted maintenance intervals
- High costs during shut-down (EUR 5000 €/h)





04.04.2011

S. Benecke et al. (Dept. ERE)

Dr-Ing. Dr. rer. oec. Michael Niedermayer

Dept. System Design & Integration

© Fraunhofer IZM

**XXX**ecomos





# **Application: Condition Monitoring of Paper Mills**

#### Solution:

- Self-sufficient sensor nodes form a network for wireless condition monitoring
- Early detection of failures through measurement of critical parameters, e.g. vibrations



| $\cap$ | Λ  | $\cap$ | Λ  | 2 | $\cap$ | 1 |
|--------|----|--------|----|---|--------|---|
| U      | ÷. | U      | ÷. | _ | V      | 1 |

S. Benecke et al. (Dept. ERE)

Dr-Ing. Dr. rer. oec. Michael Niedermayer

Dept. System Design & Integration

© Fraunhofer IZM

**XXX**ecomos





# **Components of the self-sufficient radio sensors**

- Principle Schematic of the Sensor System
  - Acceleration sensor attached to vibrating machine surface
  - AD-Converter
  - DSP for FFT and analysis of characteristic spectrum
  - Proprietary communication standard
  - **Energy Harvesting device**



Forschungsschwerpunkt Technologien der Mikroperipherik

IZM



# **Approach of Model-based Design**



© Fraunhofer IZM

**M**ecomos



### **Selection of the Ambient Energy Source**



IZM

Technologien der Mikroperipherik

#### **Input Profiles - Ambient Conditions in Paper Mill**











S. Benecke et al. (Dept. ERE)

Dr-Ing. Dr. rer. oec. Michael Niedermayer

Dept. System Design & Integration

© Fraunhofer IZM

04.04.2011

xxecomos



#### **Characterization of Thermoelectric Converter**



5,0<sub>7</sub> Inner Resistance [Ohm] 0 0 4,5 0 0 4,0 0 ° ° o 0 3,5 0 0 40 60 80 100 20 Temperature [°C]

Seebeck-Coefficient vs. Temperature



04.04.2011

S. Benecke et al. (Dept. ERE)

Dept. System Design & Integration

© Fraunhofer IZM



Technische Universität Berlin Forschungsschwerpunkt Technologien der Mikroperipherik



#### Serial Inner Resistance vs. Temperature

#### **Conversion Chain – Characterization DC/DC Converter**



IZM

Technologien der Mikroperipherik

#### Simulink-Model: Source – Conversion – Sink



© Fraunhofer IZM

**XXX**ecomos

Forschungsschwerpunkt Technologien der Mikroperipherik

IZM

### Simulation Results



IZM

Technologien der Mikroperipherik

# **Overall System Performance**



04.04.2011

S. Benecke et al. (Dept. ERE); U. Kagelmarker et al. (IMC)

Dr-Ing. Dr. rer. oec. Michael Niedermayer

Dept. System Design & Integration

© Fraunhofer IZM

xcecomos



# **Piezoelectric Transducer**

- PCT ceramics
  - Utilization of the transversal piezoelectric effect
  - High energy-efficiency only for excitations near resonant frequency => complicates a universal applicability





04.04.2011

S. Benecke et al. (Dept. ERE); J. Hefer et al. (Dept. SDI)

Dr-Ing. Dr. rer. oec. Michael Niedermayer

Dept. System Design & Integration

© Fraunhofer IZM

**XXX**ecomos





# **Resonant Frequency of Vibration Transducers**

|                                     | Prin-<br>ciple* | F<br>[Hz]         | Bandwidth<br>[Hz] | M<br>[g] | V<br>[cm <sup>3</sup> ] | Ρ<br>[μW]        | P-Density<br>[µW/cm³] |
|-------------------------------------|-----------------|-------------------|-------------------|----------|-------------------------|------------------|-----------------------|
| Perpetuum PMG 17                    | EM              | 50,60,<br>100,120 | >±20Hz            | 655      | 130                     | 13000<br>(250mg) | 99,5                  |
| AdaptiveEnergy<br>Joule-Tief Module | ΡZ              | 60                | ?                 | 43       | 34,5                    | ~250<br>(200mg)  | 7,3                   |
| Cedrat APA400M-MD                   | ΡZ              | 110               | ?                 | 270      | 35,2                    | 95000<br>(max.)  | 2699                  |
| Volture PEH25W<br>(V25W)            | ΡZ              | 40                | 3                 | 85       | 40,5                    | 931<br>(250mg)   | 23                    |
| Baumer Piezo                        | ΡZ              | 265               | 10                | 500      | 140                     | 3000<br>(250mg)  | 21,5                  |
| Baumer Stack8                       | ΡZ              | 300-800           | 500               | 1836     | 464                     | 420<br>(200mg)   | <1                    |



\*EM: Electromagnetic; PZ: Piezo

04.04.2011

B. Hiller et al. (Baumer-Hübner)

Dr-Ing. Dr. rer. oec. Michael Niedermayer

Dept. System Design & Integration

© Fraunhofer IZM

**M**ecomos





# **Universal Piezoelectric Transducer**

- Stack of 8 piezoelectric transducer with different resonant frequencies
  - Increased bandwidth of 300-800Hz
  - Power between 94 … 420µW at 2m/s<sup>2</sup>









Dr-Ing. Dr. rer. oec. Michael Niedermayer

Dept. System Design & Integration











Dept. System Design & Integration

© Fraunhofer IZM





#### **Further Activities: Wafer-Level Batteries & Fuel Cells**



Wafer level batteries (silicon cavity battery)



Hydrogene fuel cell, 0.1 cm<sup>2</sup> active area (Pulse power of 200mW/cm<sup>2</sup> achieved)

04.04.2011

Dept. System Design & Integration

© Fraunhofer IZM

Robert Hahn et al. (Dept. HDI.WLP)

Dr-Ing. Dr. rer. oec. Michael Niedermayer









# Thank you for your attention!







#### Impressum

- Dr.-Ing. Dr. rer. oec. Michael Niedermayer
  - Email: michael.niedermayer@izm.fraunhofer.de
  - Telefon: +49 30 64603 -185
- Dipl.-Ing. Stephan Benecke
  - Email: stephan.benecke@izm.fraunhofer.de
  - Telefon: +49 30 64603 -748
- Dipl.-Ing. Eduard Kravcenko
  - Email: eduard.kravcenko@izm.fraunhofer.de
  - Telefon: +49 30 64603 -780
- The project ECoMoS is funded by the German Federal Ministry of Education and Research.

04.04.2011

Dept. System Design & Integration

© Fraunhofer IZM







Dr-Ing. Dr. rer. oec. Michael Niedermayer